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1. Introduction
Let a and q be variables such that |q| < 1, then the conventional q− Pochammer

symbol is defined as,

(a; q)n =
n−1∏
k=0

(1− aqk)
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for any positive integer n and

(a; q)0 = 1 and (a; q)∞ =
∞∏
k=0

(1− aqk).

Also, for any real number n we define,

(a; q)n =
(a; q)∞
(aqn; q)∞

and for variables a1, a2, ..., ak we define the shorthand notation

(a1, a2, ..., ak; q)n = (a1; q)n(a2; q)n...(ak; q)n.

The study of finite continued fractions i.e., expressions of the form

a1

b1 +
a2

b2 +
a3

b3+...+
an
bn

which is written more economically as,

a1
b1+

a2
b2+

a3
b3+

...
an
bn

began in its explicit form in the letter decades of the 16th century with a paper of
Bombelli written when the concepts and notations of algebra were first being laid
down in Italy and France.

Thus use of continued fractions as an important tool in number theory began
with the 17th century results of Schwenter, Huygens and Walls and come to ma-
turity with the work of Euler in 1737. The infinite continued fractions is written
as,

a1
b1+

a2
b2+

a3
b3+

...
an
bn+

...∞

One of the old result on continued fraction is,

√
5− 1

2
=

1

1+

1

1+

1

1+
...∞ (1.1)
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Proof of this result is very simple, viz.,
√
5− 1

2
=

1

2√
5− 1

(√
5 + 1√
5 + 1

)

=
1√
5 + 1

2

=
1

1 +

√
5− 1

2
Now, iterating this process one can get (1.1).
This result might has attracted Ramanujan. He has established large number of
results involving continued fraction in his first, second, third and also in ‘lost’
Notebooks. Many other mathematicians all over the world have either established
or proved the results of Srinivasa Ramanujan. Some of the notable names of the
mathematicians are as Andrews [2], Bruce Berndt [7, 8], Agarwal R. P. [1], Adiga,
C., Berndt, B. C., Bhargava and Watson, G. N. [3], Andrwes G. E. and Bowmen
D., [4], Bhagirathi [9], Bhargava, S., Adiga C., and Somashekare, D. [10], Denis,
R. Y. [11, 12], Denis, R. Y. and Singh, S. N. [13], Denis R. Y. and Singh, S. P. [14],
Singh, S. N. [17, 18] and many others.

Now following the process of (1.1) we establish a new continued fraction of
H1(q)

G1(q)
.

2. Continued Fraction
In this section we establish a result on continued fraction. The most celebrated

identities due to Rogers and Ramanujan are

H(q) =
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
, (2.1)

and

G(q) =
∞∑
n=0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
. (2.2)

Ramanujan showed that

H(q)

G(q)
=

∞∑
n=0

qn
2+n

(q; q)n
∞∑
n=0

qn
2

(q; q)n

=
(q, q4; q5)∞
(q2, q3; q5)∞
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=
1

1+

q

1+

q2

1+

q3

1+ . . . ∞
, where |q| < 1. (2.3)

Ramanujan established following two more identities,

H1(q) =
∞∑
n=0

qn
2+2n

(q4; q4)n
=

(q2; q2)∞
(q2, q3; q5)∞

, (2.4)

and

G1(q) =
∞∑
n=0

qn
2

(q4; q4)n
=

(q2; q2)∞
(q, q4; q5)∞

. (2.5)

Taking the ratio of H1(q) and G1(q) we have,

H1(q)

G1(q)
=

∞∑
n=0

qn
2+2n

(q4; q4)n
∞∑
n=0

qn
2

(q4; q4)n

=
(q, q4; q5)∞
(q2, q3; q5)∞

. (2.6)

Now, making use of (2.3) we have

H1(q)

G1(q)
=

(q, q4; q5)∞
(q2, q3; q5)∞

=
1

1+

q

1+

q2

1+

q3

1+ . . . ∞
, where |q| < 1. (2.7)

Now following the process of (1.1) we establish a new continued fraction of
H1(q)

G1(q)
.

Let us consider

H1(q)

G1(q)
=

∞∑
n=0

qn
2+2n

(q4; q4)n
∞∑
n=0

qn
2

(q4; q4)n

=
1

1 +

∞∑
n=0

qn
2
(1− q2n)

(q2; q2)n(−q2; q2)n
∞∑
n=0

qn
2+2n

(q2; q2)n(−q2; q2)n
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=
1

1 +

∞∑
n=1

qn
2

(q2; q2)n−1(−q2; q2)n
∞∑
n=0

qn
2+2n

(q2; q2)n(−q2; q2)n

=
1

1 +

∞∑
n=0

q(n+1)2

(q2; q2)n(−q2; q2)n+1

∞∑
n=0

qn
2+2n

(q2; q2)n(−q2; q2)n

=
1

1 +
q/(1 + q2)

1 +

∞∑
n=0

qn
2+2n

(q2; q2)n

{
1

(−q2; q2)n
− 1

(−q4; q2)n

}
∞∑
n=0

qn
2+2n

(q2; q2)n(−q4; q2)n

=
1

1 +
q/(1 + q2)

1−

∞∑
n=1

qn
2+2n+2

(q2; q2)n−1(−q2; q2)n+1

∞∑
n=0

qn
2+2n

(q2; q2)n(−q4; q2)n

=
1

1 +
q/(1 + q2)

1− q5/(1 + q2)(1 + q4)

1 +

∞∑
n=0

qn
2+2n(1− q2n)

(q2; q2)n(−q4; q2)n
∞∑
n=0

qn
2+4n

(q2; q2)n(−q4; q2)n
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=
1

1 +
q/(1 + q2)

1− q5/(1 + q2)(1 + q4)

1 +
q3/(1 + q4)

1 +

∞∑
n=0

qn
2+4n

(q2; q2)n

{
1

(−q4; q2)n
− 1

(−q6; q2)n

}
∞∑
n=0

qn
2+4n

(q2; q2)n(−q6; q2)n

=
1

1 +
q/(1 + q2)

1− q5/(1 + q2)(1 + q4)

1 +
q3/(1 + q4)

1− q7/(1 + q4)(1 + q6)

1 +

∞∑
n=0

qn
2+4n

(q2; q2)n(−q6; q2)n
∞∑
n=0

qn
2+6n

(q2; q2)n(−q6; q2)n

Iterating this process we get,

H1(q)

G1(q)
=

1

1 +
q/(1 + q2)

1− q5/(1 + q2)(1 + q4)

1 +
q3/(1 + q4)

1− q7/(1 + q4)(1 + q6)

1 +
q5/(1 + q6)

1− q9/(1 + q6)(1 + q8)

1+...

H1(q)

G1(q)
=

1

1+

q/(1 + q2)

1−
q5/(1 + q2)(1 + q4)

1+

q3/(1 + q4)

1−
q7/(1 + q4)(1 + q6)

1+

q5/(1 + q6)

1−
q9/(1 + q6)(1 + q8)

1+
... . (2.8)
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3. Modular Identities and Continued Fractions
In this section we discuss about certain results involving modular identities and

continued fractions.
Here we start with Ramanujan’s theta functions. Ramanujan motivated with Ja-
cobi’s theta functions defined his own theta functions as,

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (3.1)

Applying the Jacobi’s triple product identity [15; App. II 28] (3.1) yields following
functions,

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2

=
∞∑

n=−∞

(ab)n
2/2
(a
b

)n/2
= (−a; ab)∞(−b; ab)∞(ab; ab)∞. (3.2)

Following are the particular cases of (3.2),

f(q, q) = Φ(q) = (−q; q2)2∞(q2; q2)∞. (3.3)

f(q, q3) = Ψ(q) = (−q; q4)∞(−q3; q4)∞(q4; q4)∞ = (−q; q)∞(q2; q2)∞. (3.4)

f(−q) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞. (3.5)

In order to establish our main results we need following modular identities

G(q)H(−q) +G(−q)H(q) =
2Ψ(q2)

(q2; q2)∞
. (3.6)

[5; (4.3.5) p. 114]

G(q)H(−q)−G(−q)H(q) =
2qΨ(q10)

(q2; q2)∞
. (3.7)

[5; (4.3.6) p. 114]
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In the ‘Lost’ notebook of Ramanujan mentioned following identity,

G(q)G(q4) + qH(q)H(q4) =
Φ(q)

(q2; q2)∞
. (3.8)

By making use of (3.3)

G(q)G(q4) + qH(q)H(q4) = (−q; q2)∞. (3.9)

G. N. Watson proved (3.8) and also established following two identities.

G(−q)Φ(q)−G(q)Φ(−q) = 2qH(q4)Ψ(q2). (3.10)

H(−q)Φ(q) +H(q)Φ(−q) = 2G(q4)Ψ(q2). (3.11)

(a) Adding (3.6) and (3.7) we get,

G(q)H(−q) =
Ψ(q2) + qΨ(q10)

(q2; q2)∞
. (3.12)

Again, subtracting (3.7) from (3.6) we get,

G(−q)H(q) =
Ψ(q2)− qΨ(q10)

(q2; q2)∞
. (3.13)

Dividing (3.13) by (3.12) we find,

Ψ(q2)− qΨ(q10)

Ψ(q2) + qΨ(q10)
=

H(q)/G(q)

H(−q)/G(−q)
(3.14)

Now making use of (2.3) in (3.14) we have,

Ψ(q2)− qΨ(q10)

Ψ(q2) + qΨ(q10)
=

{
1

1+

q

1+

q2

1+
...

}{
1

1−
q

1+

q2

1−
q3

1+
...

}−1

. (3.15)

Putting −q for q in (3.8) we have,

G(−q)G(q4)− qH(−q)H(q4) =
Φ(−q)

(q2; q2)∞
= (q; q2)2∞. (3.16)

Dividing (3.9) by (3.16) we get

G(q)G(q4) + qH(q)H(q4)

G(−q)G(q4)− qH(−q)H(q4)
=

(−q; q2)2∞
(q; q2)2∞
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= (−q; q2)2∞(−q; q)2∞ = {(−q; q)∞(−q; q2)∞}2. (3.17)

Dividing (3.10) by (3.11) we find,

G(−q)Φ(q)−G(q)Φ(−q)

H(−q)Φ(q) +H(q)Φ(−q)
= q

H(q4)

G(q4)

=
q

1+

q4

1+

q8

1+

q12

1+

q16

1+
..., (3.18)

which is known result [16; (2.10), p. 208].
Again, multiplying (3.10) by H(q) and (3.11) by G(q) and adding them we find,

Φ(q) {H(q)G(−q) +G(q)H(−q)} = 2Ψ(q2)
{
H(q)H(q4) +G(q)G(q4)

}
. (3.19)

Now, using Ramanujan’s modular identity (3.8) in (3.19) we get,

H(q)G(−q) +G(q)H(−q) =
2Ψ(q2)

(q2; q2)∞
= 2(−q2; q2)2∞, (3.20)

which is also a known result [16; (2.6), p. 207].
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